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Overview
• Ultrasonics

• Generation

• Effects

• Applications
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• > 20 kHz
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• Most familiar application(1.6 to 10 MHz-GHz)

Images from Wikipedia
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C-scan

Listen for echoes and scan in 2-D
Total of 3-D image

Images from Wikipedia
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• Most familiar application(50 to 100 kHz)

Images from Wikipedia
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• Most familiar application (bats 14 to 150 kHz)

Images from Wikipedia
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http://en.wikipedia.org/wiki/Image:Toothed_whale_sound_production.png
http://en.wikipedia.org/wiki/Image:Toothed_whale_sound_production.png
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• Stone, tissue destruction (1 to 20 W)

Treatment of retina tumor

Images from Wikipedia
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http://bjr.birjournals.org/content/vol76/issue909/images/large/BJR25828-1.jpeg
http://bjr.birjournals.org/content/vol76/issue909/images/large/BJR25828-1.jpeg


Waves
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Longitudinal waves

Baldev. R., Palanichamy. P., Rajendran. V., Pg 10  “Science and technology of 
ultrasonics” (2003) 
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Compressional waves

Speed of sound in air and water are 343m/s 
and 1484 m/s

Baldev. R., Palanichamy. P., Rajendran. V., Pg 10  “Science and technology of 
ultrasonics” (2003) 

IOWA STATE UNIVERSITY



Iowa State University-

Equipment
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Ultrasonic equipment

 Power Supply

 Control Level

 Actuator/Stand

 Converter

 Booster

 Horn

 Fixture
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Ultrasonic power supply
• Controller (Modular design)

– Human interface

– I/O, PLC

– SPC/Data ACQ.

• Power module

– Line conversion

– Tuning

– O/L Protection
Graphics: Branson Ultrasonics

Branson Ultrasonics
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Standard system
• Modular design

• Remote power supply

• Remote controls

• Easy for system 
integration

Graphics: Branson Ultrasonics

Branson Ultrasonics
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Ultrasonic power supplies
• All suppliers offer 

various control levels:

– Basic for PLC control

– Time

– Distance, Time, Power, 
Etc

• Application 
dependent

Graphics: Branson Ultrasonics

Branson Ultrasonics
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Actuator
• Applies welding force

• Pressure regulator

– Maximum force

• Flow control

– Down speed 

– Force buildup

• Stack mounting

• Encoder

Graphics: Branson Ultrasonics

Branson Ultrasonics
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Stack
• Three major 

components:

Graphics: Branson Ultrasonics

Converter (Linear motor) Booster Horn/sonotrode

Branson Ultrasonics
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Stack and resonance
• All parts are tuned to one frequency

• The system operators at resonance
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Stack vibrations
• Axial is the ideal mode 

for ultrasonic welding

• All component are 
design as resonators

• All other modes tend 
to:

– Reduce efficiency

– Promote failure

Graphics: Branson Ultrasonics
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Converters
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Converter/Transducer
• Heart of the system

• Converters electrical 
energy to mechanical

• Motor

• 90 to 97% efficient

• Most are piezo-electric

Graphics: Branson Ultrasonics

Branson Ultrasonics
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Converter
• Most are piezo-electric

– High voltage (1-5 KV)

– Ceramic crystals

– (½ )

• Less popular are 
magnetostrictive

Graphics: Branson Ultrasonics
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Stack output

Amplitude (P-P)

Node (mounting point)
Graphics: Branson Ultrasonics
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Typical converter output

40 kHz
10 microns

20 kHz
20 microns

15 kHz
30 microns

30 kHz
15 microns

 Peek to Peek  amplitude

 At 100% output:
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Converter characteristics
• Maximum power

• Frequency

• Efficiency

• Cooling

– Forced air

– Static Air
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Converter failures

• Off modes of vibration/wrong frequency

– Usually in the horn

• Impact

– Jack hammering

– Contact with fixture

• Cooling

– No air

– Poor design
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Iowa State University-

Boosters & Horns
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Boosters
• Mechanical amplifier

• Discreet factors

• Materials:

– Al: Cost effective

– Ti: Tough applications

• Mounting point of 
stack

Graphics: Branson Ultrasonics
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Booster/horn gain
• Ratio of volume above 

and below nodal 
plane
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Horns/Sonotrodes

• Applies:
– Ultrasonic energy

– Force

• Tuned (½ and full )

• Material
– Al:Cost effective

– Ti: High gain

– Steel: High wear

– Ferro-Tec

– Coated: High wear

Graphics: Branson Ultrasonics
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Horns (Half and full )
• Application 

dependent

• Allows welding 
internal to the 
application 

Graphics: Branson Ultrasonics
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Horns (Full )
• Application 

dependent

• Allows welding 
internal to the 
application 

Graphics: Branson Ultrasonics
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Horns-replacement tips
• Cost effective solution 

with high wear 
application:

– Inserts

– Glass filled staking

• Can be re-machined

Graphics: Branson Ultrasonics
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Horn design
• Three typical horns

Graphics: Branson Ultrasonics
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Step horn
• Early design

• Moderate amplitude

• High stress

• Easy to manufacture Stress

Amplitude

Graphics: Branson Ultrasonics
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Exponential horn
• Moderate stress

• High amplitude

Stress

Amplitude

Graphics: Branson Ultrasonics
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Catenoidal horn
• Low stress

• High amplitude

Stress

Amplitude

Graphics: Branson Ultrasonics

IOWA STATE UNIVERSITY



Iowa State University

Stack amplitude:

:
Graphics: Branson Ultrasonics

20 μmpp 1:2.5     (50 μmpp) 1:2.0   (100 μmpp)

20 μmpp 1:1.0     (20 μmpp) 1:3.0   (60 μmpp)
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Booster

• Mounting

C
L

Rubber O-Rings

Clamp ring

Motion

Motion
Nodal plane
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Booster
• Deflection –asymmetrical loading

C
L
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Booster
• Rigid Mount booster (converter)

C
L

Motion
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~900 VAC @ 20 kHz (0-5 Amps)

Tuning via zero phase  between V and I

PZT converter

Produces 20 microns p-p vibrations

Mechanical booster

“Horn”-delivers mechanical

Vibrations to parts 

(20-120 p-p amplitude)

Overall system
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Ideal mode vibration 

Uniform and in phase

Horn face that contacts part

Axial mode of vibration
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Possible flexural mode

Flexural mode of vibration
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Ultrasonic frequencies
• Typical 20 and 40 kHz

• The higher the frequency 
the smaller the converter & 
stack

• Power is limited by 
converter capacity

• The power output is limited 
to size due to heat 
generation

Graphics: Branson Ultrasonics
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Ultrasonic frequencies
• Manufacturers rate 

converters by different 
duty cycles

• There is always some 
controversy on 
maximum power

• Typical max. power for a 
single converter (value 
vary for manufacturer):
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Liquid processing
Cavitations   

Sonics and Materials
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Cavitation

Iowa State University
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Acoustic Cavitation

Suslick et al., Nature, 1999, 401, 772.
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Multi-Bubble Sonoluminescence:  

1 cm Ti horn

50 µm
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Multibubble Cavitation:

Hot Spot Conditions in Bubble Clouds

Pressure:

Duration:

> 1012 K/sec

5000 K

~300 atm

~ 1 nsec

Cooling rate:

Suslick et al., Nature, 1999, 401, 772.

Temperature:



Nucleation
• Without nucleation the cavitations process 

will not start without extremely high pressures

• The nucleation process acts a stress 
concentration point to cause tensile failure of 
the liquid (water =100 atms)

• Edges, dusts, etc

• Growth occurs when the local pressure (p) is 
less than the vapor pressure (pv)

Iowa State University
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Nucleation
• Most often at:

– Edge

– Dust

– Can be induced

• Laser

Iowa State University

Liquid
Dirt with rough edges

Liquid can not flow into 
voids because of 
surface energy
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Growth
• Cyclic growth

– At high pressure the bubble decreases in size

– At low (negative) pressure the bubble grows

– The overall growth is positive

Iowa State University
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Rectified diffusion
• Once a bubble forms, the pressure change:

– During compression the liquid near the bubble has 
increase saturation limit

• Gas diffuses from the bubble into the liquid

• The surface area is small because of compression

– During rarefaction the liquid becomes super 
saturated

• Gas diffuses from the liquid into the bubble

• The surface area is large

– The relative change in surface area causes more gas 
into the bubble overtime

Iowa State University
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Collapse

• This is similar to buckling issues

– Blowing a bubble that is too large

– Soap bubble too large

Iowa State University

Stable
Un-stable
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Collapse
• Isothermal

– High surface area to volume ratio

– As bubble collapses the gas in compressed

– Not until the very last moment does the temperature climb

– 5000 K

Iowa State University
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Collapse
Asymmetrical collapse

• Near by forces
– Particle

– Bubbles

– Temperature

– Pressure

– etc

Jetting

Iowa State University
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Collapse

Storz doulth shock wave : web image for Ultrasonic shock wave therapy 
equipment.
(http://www.lockstockuae.com/products/_storz_duolith_shockwave) visited on 
5/13/2011
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http://www.lockstockuae.com/products/_storz_duolith_shockwave


Propagation
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Propagation

Iowa State University
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Liquid processing

Streaming
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Far field vs near field
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Far field vs near field

r=a

Source

Edge effect waves

Planar wave

Diffraction patterns

Near field
Far field

R= π a2/λ
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Continues treatment
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Continues treatment

Branson Ultrasonics
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Applications
• Industrial

– Metal welding

– Plastics welding

– Cutting

– Drilling

• Bio

– Biofuels

– Medical

IOWA STATE UNIVERSITY



Iowa State University Metal welding
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Model assumptions:

1. No losses on motion with the sample

2. The lower part remains perfectly stationary

3. Constant material properties

4. Constant displacement and forces

5. No inertial effects

6. No stored energy

Theoretical Stokes Model
Frictional heating
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• Power –defined as:

F -frictional force; v –velocity

• Instantaneous velocity –defined as:

• Instantaneous displacement –defined as:

A0 – peak displacement

vFP 

)sin()( 0 tAtv 

)cos()( 0 tAtx 

Frictional heating
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• Instantaneous dissipated power –defined as:

• Frictional force –defined as:

µ -coefficient of friction;

f –applied normal force

• Instantaneous power –redefined as:

)sin()( 0 tAFtP 

fF  

)sin()( 0 tAftP 

Frictional heating

IOWA STATE UNIVERSITY
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• The average Power –estimated by integrating the previous 
function over a wave period –defined as:



 02 Af
Pavg 

Frictional heating
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Frictional heat

Additional assumptions:

- Amplitude at the weld interface - approximately      
50% of the prescribed amplitude

-1-D heat flow (only concerned about peak temp)

x Similar temperature

q
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Heating

• To estimate bond line temperature – a semi infinite 
one dimensional model – assumed

θ–temperature, λ –thermal conductivity,

x –position, κ –thermal diffusivity (λ/ρC),

t –time, erfc (z) –complementary error 

θi –initial temperature of the solid, function

q0 –heat flux at the surface, 
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Heating

• Consider only the final size of the weld 

• Estimate the weld failure area  

• Estimate the heat flux at the surface (x=0)

q0 =P/2A

A=πr2

r

x
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Frictional heating
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Heating during metal welding
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Metal welding resonance

IOWA STATE UNIVERSITY



Metal welding continuous
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Cutting
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Food cutting

Dukane Ultrasonics
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Food packaging-Cheese

Hermann Ul
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Food packaging-liquid

Hermann Ultrasonics
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Dukane Ultrasonics
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Cutting composites

Dukane
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Cookie Dough

Branson Ultrasonics
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Cheese cutting

Branson Ultrasonics
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Candy bar

Branson Ultrasonics
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Defoaming
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Humidifier
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De-foaling
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Plastic welding
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Background
• Heating

• Joint design acts as stress concentrator

• Energy director, shear joints, etc.

2

" 2
0E

Q 

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Background
• Molecular friction
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Background
• Heating

• Motion is a sinusoidal function 

– ε:strain amplitude

– ω: Frequency

) cos(0 t 
ε

 E
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Background

• Thus average heating:

– Temperature:
• Frequency (ω) Constant

• Amplitude (ε) Key parameter

• E”-Loss modulus is difficult to define

– Controlling the amplitude allows 
temperature control!

– The wrong temperature, dinner is 
ruined!!
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Background
Melt viscosity of plastics:

e
E/RT

Temperature

V
is
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si

ty
 (
η

)
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Background
Melt viscosity of plastics:
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Melt viscosity of plastics:



eE/RT

T 

Amplitude 

1/Amplitude
Induced strain (Amplitude)

Viscosity
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Melt viscosity of plastics:

Bridging No Bridging
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Temperature (oC)
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• With collapse constant:
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• Typical cross sections:

High Amplitude

Thin Bond Line

Low Amplitude

Thick Bond Line
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• Amplitude and weld strength:
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• Amplitude profiling

Amplitude (m)

Time (mS)

Conventional Amplitude

Ramped Amplitude

Stepped Amplitude

Time when amplitude is changed

Amplitude B

Amplitude A

Start melt

Controlled

flow

IOWA STATE UNIVERSITY



Amplitude profiling
• P= V x I

• Current is limited 
by wire size

A
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Amplitude setting (%)
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Tooth paste tubes

Branson Ultrasonics
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Blister pack

Branson Ultrasonics
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Other industrial application
• Rock cutting

• Additive manufacturing

• Particle removal

• etc
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Chemical processing
• Biofuels

– Enhance biodiesel (60 min to 15 s)

– Enhance ethanol (No jet cooking)

– Ionic liquids

– etc

IOWA STATE UNIVERSITY



Biodiesel
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Modeling of liquid processing
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Modeling of liquid processing
IOWA STATE UNIVERSITY



Water treatment

Sonix
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Medical
• Drug delivery

• Cutting

• Adhesive removal

• Stone breaking

• etc
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Plaque removal
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Plaque removal
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Thanks!!
• CIRAS

• UIA

• Questions

• Comments
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