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In this paper a piezoelectric ultrasonic transducer of the Langevin type is described and
analysed. This type of transducer may have its design frequency between 15 and 150 kHz.
It can handle a power intensity of more than 40 W/cm?.

First, the considerations leading to the choice of a symmetrical prestressed design are
summarized. A theoretical analysis is then made of the electro-mechanical properties of
the unloaded vibrator. ‘The derived formulae for the transformation factor and for the
electrical impedance as’a function of frequency-are experimentally verified. Finally, the
analytical results are applied to an acoustically loaded transducer.

Introduction

The principal demands made upon a power transducer for
macrosonic applications such as metal and plastic welding.
dnlling, wire drawing, and cleaning are:

1) It must convert electric power into a certain amount of
mechantical vibrational power at the design frequency:

1) the internal power loss must be small, as dissipation is
the limiting factor in determining the power to be trans-
ferred:

3) the electric impedance must be low. so that a minimum
electric voltage is required, and matching to a solid
state power source is facilitated: and

4) the design should enable easy loss free coupling of the
transducer to the rest of the vibrator.

In order to enable the selection of optimum materials and
dimensions for a transducer the quantitative influence of

these factors on the electro-mechanical characteristics of

the device have to be analysed.

In the present paper, the results obtained from an analysis
of the mechanically unloaded transducer are generalized

for the loaded transducer by using a two-port representation.

By this means, it is also made possible to determine the
varying mechanical properties of the load by means of
measurements made at the electrical terminals of the
vibrator. This possibility is likely to be most helpful in the
study of ultrasonic technological processes.

A piezoelectric sandwich transducer
Design considerations

A few years ago a power transducer was designed which
aimed at the fultilment of the requirements summed up in
the Introduction [1]. This transducer. shown in Fig. |, was
designed as a sundwich’” transducer. consisting of two
piczoclectric rings fixed between two metal end picces. A
first advantage of this Langevin [2] type of transducer is
the reduction in the length of piczoelectric material re-
quired if the device is to resonate at a given frequency [31.
As a result the electric impedance is reduced and the influ-
ence of variations in the physical properties of the piezo-
electric material on the transducer characteristics is dimin-
ished.

A second advantage of the sandwich design is that it makes
possible the introduction of a mechanical compressive pre-
stress in the assembly by-means of a central bolt [3., 3. 5]
or a peripheral sleeve [6]. Thus, the admissible dynamic
stress amplitude and hence the maximum power intensity
are considerably increased.

\

Further. the prestress improves the mechanical contact be-
tween the parts, which results in a distinct decrease in mech-
anical damping in the contact zones. The effect is streng-
thened by the presence of very soft annealed copper shims
between the parts.
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Fig. 1 Composite prestressed ultrasonic transducer (20 kHz version)
Construction Analysis of the unloaded transducer
=5 The members of our transducer family are meant to trans- The impedance of the freely vibrating transducer
mit ultrasonic energy from one of their end facesinto a o . . .
‘ solid or liquid load, while the other end face radiates into The simplified transducer construction of Fig. 3 is taken as
the air. The piezoelectric rings, which are silver electroded a starting point for the analysis.
at the end faces, are clgmped between the metal end pieces As there is symmetry with respect to the planez =/ +[°
by means of a bolt which bears a permanent tensile stress. and as there are no external forces working on the vibrator
The protruding parts of the bolt provide an excellent means it follows that:
of fastening any further waveguide, The bolt is made of the
same material as the end pieces in order to avoid friction in vp ==rp and ve = 0 (1)
the thread between the parts. For the same reason, the
dynamic strains in the threaded parts of end piece and bolt where v represents the peak value of the sinusoidally varying
are made equal. Therefore, the bolt has its excursion anti- particle velocity v (z,£). If it is assumed that there is no ener-
node coincident with that of the outer part of the assembly. gy dissipation in the end piece metal, the mechanical driving
This has been realized by giving the central bolt a stepped point impedance of the metal rod BE inz = /' is equal to [9]:
cylindrical form. Langevin’s equation [5] has been used to
establish the dimensions of the bolt. wl
The piezoelectric material is the ceramic PZT 4 [7]. The Zy = jA ¢ tan (; ) - )
metal parts are made of a titanium alloy. This metal com-
bines a high static and dynamic strength with a low charac- Hence, the peak mechanical stress, d£, in the contact plane
teristic impedance and a low mechanical loss factor. of ceramic and metal is:
The optimum value of the prestress has been established wl’
experimentally. Fig. 2 shows how the resonance frequency o = je c'uE tan { — ). (3)
of the assembly depends on the value of the prestress in the ¢
piezoelectric material. At low stress, there is insufficient As the thickness/ of the piezoelectric ring is small compared
mechanical contact between the members so that a tran- with the wavelength in the material, the velocity distribution
sition zone of apparently reduced stiffness is present. If the may be linearized in the axial, or 3—. direction. The axial
prestress is increased to 35 N/mm? the influence of this strain §3 then becomes:
region has almost disappeared. Also the equivalent damping
i resistance (see below) is strongly reduced at the higher pre- _ B_E _ - EE = 73
Sy = = constant = — £ = _ £ (4)
stress values [6, 8]. oz ] jwl
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Here, the velocity v is obtained by multiplying the excursion
amplitude £ with a factorjw =j2xf. If the mechanical stress
in the piezoelectric ring, 43, is also supposed to be indepen-
dent of z, it follows by combination of Equations 3 and 4
that:

wl’
93 = g = e'c’wis, tan (—c) =85f(w) (%)
with ’
L w )
f(w) = e'c'wi tan {— 6)
c
A relation between the mechanical and the electrical quanti-
ties in the piezoelectric ceramic is given by the linear piezo-
electric relations which, in the general case have the form
[10]:

D

D
S3 = s13 (8, + 6,) + 333 6y + 33353 @)

®

Here, D3 and £73 are the charge density and the electric field
strength in the polarization direction, respectively. The con-
stants sD, g, and 9 are elements of the elastic, the piezoelec-
tric and the dielectric tensors, respectively. As it is not realis-
tic to assume the radial and tangential normal stresses 8| and
87 to be zero, it is convenient to introduce ‘effective’ values
of the appropriate elastic and piezoelectric constants, viz:

dl + d2
.TD = SD + SD
313 J,
dl + dZ)
d]

Because the sign of (d;] + @) will be opposite to that of d3
and because both s% < Qand 231 < 0, it follows that:

. 4
Ey = - 85(8) + S)) — g33 05 + f33D,

&)

& = 833 * &y

s > S‘_% and g > £33

So, the piezoelectric relations (7) and (8) become:

# oD
Sy =785+ 833D, (10)
_ d
3= -8 0,485, 0, Wi
Substitution of Equation 5 into 10 yields:
£33 f(w)
d3 = — D3
1 - 5P f(w) (2

On substitution of this Equation into (11) a relation between
the electric field strength and the charge density results:
ad

RGOyl L

The electric voltage, u, across the transducer terminals
equals £3/ and the summed current intensity in the two

g £33 flw)
(13)
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piezoelectric rings is jwD3.2A4. If the capacity Cg is de-
fined as
24
Co= — . (14)
)
(]
‘633 !
the electrical impedance at zero mechanical force at the end
faces is:

¢ jwey 1 -sP flw)
Here, s& is defined by putting:

833 = BYy & - D) (16)
by analogy with [7):

2 _ pd [ E D
833 = B33 G35 - $33)

The impedance of the clamped transducer

Consider the imaginary case that the transducer is perfectly
clamped at both end faces. Then. analogous to Equation 1
and Fig. 3.

FD=—FB:mdFC=O (17)

Now, the force F is dependent on z in the same way as was
the velocity v in the previous section (see Fig. 3). Hence.

the mean value of the force in the piczoelectric rings is zero.

As the same applies to the stress d3. the impedance can be
directly derived from Equation 11,

= pdg .
E3 = 33303
or,
i 1
Zg= —— (18)
jwcy

where C, the clamped capacitance, is the same as given
before in Equation 14. It s noteworthy that the capaci-
tance of the clamped transducer is described by means of

the permittivity I/Bg3 at constant stress.
Resonance conditions

The expressions (15) and (18) for the electrical impedance
of the transducer remain valid if the coefficients are ex-
pressed as complex quantities in order to take account of
electrical and mechanical losses. As the mechanical loss
factor of the end piece metal is about two orders of magni-
tude smaller than that of the ceramic, it is assumed that all
losses are concentrated in the piezoelectric rings. Hence:

R S (1.7
£ = o (1= joE) (19)

P3d3= ﬁg} (1 +j‘se)

The definitions are such that both the mechanical loss fac-
tors &, and the dielectric loss factor e are positive [11].

By this means, a more general form of the impedance func-
tion (15) is obtained:
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1 +j5€ 1 - ff (w)
C — 3
jwC,  1-Pr(w) =

In Fig. 4, the modulus and the phase of the complex impe-
dance are plotted against relative frequency for a typical
transducer. Two special frequencies can immediately be
derived from Equation 20, viz:

F o=
Z, =

| I
fwy) = .s; -and f(wp) = sD ‘ (h

These formulae define a set of angular frequencies that is
comparable to the series and parallel resonance frequencies
commonly found in the analysis of vibrators which are
entirely made of piezoelectric material [12,13]. At these
angular frequencies, ws and Wp, the impedance is zero and
infinite, respectively, if no mechanical losses are present.

For technical purposes it is assumed that:

we = w, and wp ® w, 22)

where wr and wy are the frequencies of zero phase differ-
ence between electric current and voltage. This assumption
holds because the impedances at anti-resonance and reson-
ance differ by more than a factor of 100. The equivalent
damping resistance, i.e.. the electrical impedance at the
resonance frequency wy is obtained by substitution of
Equation 21 into the impedance function (2),

1+6, isE,

zE(wy) =
jwCy 1 -2 flwy)
or,
zF(w) = ’—i'E"— (23)
(4 S (.'JSCO kZ

Here, the effective coupling factor is:
k2= - — 49

The electro-mechanical transformation factor

In the linear case, the electro-mechanical transformation fac-
tor TF is defined as the ratio of the electric current inten-
sity and the mechanical end face velocity of the freely vi-
brating transducer. Hence, F =0, and
i
TF & —p (25)
Vg
where i and v are defined as in Fig. 3.

If the complex character of the piezoelectric and mechani-
cal constants is taken into account, Equation 12 is written

&35 f(w)

D 26
§ g0 fas) 2 (26)

with D3 =i/2jwA. The stress in the piezoelectric ceramic,
83, is expressed in the excursion amplitude in the interface
£ with the aid of Equations 4 and 5.
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Fig.4 Modulus and phase of the impedance function (20)
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d4. = " TR
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As the velocity distribution along the z-axis is described with
a cosine function, it follows:

UB wl') )
d; = - Tl cos (T . f(w) 27

Elimination of &3 from Equations 27 and 26 yields and
expression for TF, viz:

!‘
TF - _ E.i cos(—w—'){! - _st(w)} (28)

3331 c

i I W JRINGE)y Uy HEI~pgUWEr Irdnyduccry

with f(w) according to Equation 6, and ;_D according to
Equation (19). Of special interest is the value of TF at the
angular resonance frequency wg, where, according to
Equations 21 and 24:
r
24 k? Wi
TF(ws) = — ——  c0§ — -(29)
3391 - c
Verification
It can be seen from relations (18) and (20) that

1 +jd,

zl(w) = = Z%(w) if w<<w; (30)

0

This formula is mathematically correct within 0.1% if
w< 0.05 ws. Hence, if the measuring frequency is taken
at about 1 kHz, the capacitance Cp and the loss angle

O are simply measured with the aid of an accurate RCL
measuring bridge.

If the quantities sE, sD, 551. 5?1. and C,, of a given ultra-

sonic power transducer have been determined by substitu-
ting the measured data of Table 1 in the relations derived in
the present analysis, the frequency response of the imped-
ance function (20) can be computed (see Fig. 4).

The result of such a computation is compared in Fig. 5 .with
an experimentally determined curve for a 20 kHz transducer.
It is found that the computed curve is on average some 2.5
to 5% higher than the measured one, except at the resonance
points where the difference, of course, is zero. For 40 kHz
and 60 kHz transducers deviations were measured of up to
10%.

The correctness of the derived formulae is clearly shown if
the impedance function (20) is combined with Equation 29
in order to obtain an expression for the end face particle
velocity, v(w), at constant electrical voltage u. Then,

- Jwg 5 (
v(w) = ; u 31)
o)1

Neglecting the imaginary parts of £33 and?ﬂ_‘;, this function
is plotted in Fig. 6 along with the results of measurements
made on an actual transducer. For these measurements a
‘Fotonic Sensor” [14] in conjunction with a lock-in amplifier
has been used. In this way, steady state particle velocities
can be measured down to 0.2 mm/s af 20kHz, i.e., an excur-
sion amplitude of about 1.5 nm (15 Angstrém). It follows
from Fig. 6 that the differences are less than 12% over a
dynamic velocity range of a factor of 100, if g33 is chosen

to fit the measured value ¢(ws)

Discussion

From the data of Table 1 numerical values of a few effective
properties of the applied piezoelectric material PZT4 have
been computed. These values are collected in Table 2, in
comparison with values given by the manufacturer of the
material [7].

There are distinct differences between the values of the
eleastic compliance s and between those of the constant
£33. A positive difference between s and 533 was expected
previously as shown above. This effect is strengthened by
the non-linear character of the stress-strain relationship,
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Table 1 Measured electromechanical transducer character-
istics ‘ )

Design

frequency 20 40 60 120 kHq
Co 608 173 118 081 nf
wp/ws 1059 1.062 1.081 1.045 —
zF (wy) 81 54 & 7 Q

Zlw) 205 80 &3 14 ko

7 (ws) 24 12 067 027 AyYm

Wg!'/c’ 1276 1.045 1.067 1251 —

which results in an increasing value of s even at moderate
static prestress levels [15]. As sD appears to be more sensi-
tive to the above-mentioned effects than s£, the effective
coupling factor k is considerably less than k33. The dyna-
mic d33 constant may decrease by about 30% if a prestress
of 35 N/mm?is applied to a stack of two discs [16]. As

£33 = B33d33.and ﬁ33 does not show an appreciable

change in our case, a similar behaviour is expected and
found for g33.

Although the damping in the end piece metal is very small,
the imperfections in the mechanical contact between the
constituent parts of the transducer will certainly contribute
to the total damping (cf Fig. 2). Hence the values for

5£ and 63 must be considered to be upper limits for the
inherent damping factor of the piezoelectric material.

The mechanically loaded transducer
Twoport representation

For the application of the analytical results above to the
case of the mechanically loaded transducer it is convenient
to represent this device as an electro-mechanical twoport.
Then electrical voltage u and current intensity i characterize
the condition at the electric terminals, while at the mechani-
cal side a force F and a particle velocity v are present. The
transfer equations are

F=a.0+a,;

o (32)

U= vt oayi

The matrix elements ajj are complex functions of frequency.

The previously derived ~ transducer characteristics can be
expressed in terms of ajj, viz:

. i}y  %n
"\ a,
5 SuyY
Zp = o = Ay (33)

2
— bu a

Z == a,, - 12

Si a;,
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These relations are easily inverted,

ay = @2 . @f - 2)

= 7F F
ap, =7F.@f - ) (34)
@ = Z

Analytical expressions for @;; can be obtained upon sub-
stitution of the Equations 1§, 20 and 28.

Equivalent circuit

The set of Equations (32) is exactly represented by means
of the equivalent circuit of Fig. 7. This circuit consists of
an electrical branch which is coupled by means of an electro-
mechanical transformer to a mechanical part. In order to
satisfy (32) the transformer must have a complex trans-
former ratio.




WG @ Jeinily U rURTt-pOWwWCT [TdRSQuUCeErs

Table 2 Effective piezoelectric properties compared with manufacturer’s data

Design 20 40 60 120 PZT4 kHz
frequency

1/3‘;3 1.16 1.05 1.20 1.10 1.15 10%F/m
be 25 25 25 25 <4 1073

& 17.4 219 - 233 20.9 155* 10 2m?/N
sP 121 12.7 16.6 16.2 7.9t 10"%m?/N
5€ e a7 18 0.4 10°

52 27 6.7 1.3 6.3 10°3

k 0.54 0.44 0.51 0.47 07% -

933 19.4 13.4 18.2 19.1 26.1 103Vm/N

£+ D
%z ¥ rgpd kg

%is fwl

N=— =—Ap'c'.2g33wsm — (35)
(122 c

where d33 = 533/_@?3. The element ajj -Nzazz repre-

sents the mechanical impedance of the transducer for the

case of short-circuited electrical terminals,

U _ 2
Zm =@y - N ay,

R rAT E
=-jdpc’ sin{— f1-sF 1w} (36)
The imaginery part of this impedance,
2wl
Xy, = —Ap’c sin (——){ l-sff(w)} (37)
c

is plotted in Fig. 8a with the quantity wg’/c’ as a para-
meter. This relation is well approximated in the region
0.9 < w/ws < 1.1 by the simple mathematical expression

w
Xt~ Ap'c‘.u(;s - :) (38)

If the mechanical branch of the equivalent circuit is sup-
posed to consist of a series connection of mass, spring and
damper, as in the usual analysis of entirely piezoelectric
vibrators 12, the curve labelled ‘IRE-equivalent circuit’ in
Fig. 8a is then obtained. It is found that relation (38) gives
a better approximation of the mechanical reactance in a
composite transducer.

The real part of the mechanical impedance follows on sub-
stitution of Equation 21 into Equation 36:

v [t f(w)
R,‘,‘, = Ap'c sin (—C-.) 6;‘-;_ fTw—S; (39)

This function is represented in Fig. 8b. From the analysis
it follows that the mechanical damping resistance

R; changes about 2% for a frequency deviation of 1%. [t

follows from Fig. 7 that a low impedance is obtained at the
electric terminals for a given acoustic load if N is made high.
This means that a high d33 constant is a desirable property
of the piezoelectric material to be applied.

The transducer under load

In Fig. 9, the equivalent circuit of a complete ultrasonic
power-transfer system is given. Here, the electrical branch
a2 of Fig. 7 is represented by the lossless capacity Coin
parallel with the dielectric loss resistance R ¢ = 1/wC, 5.

In general, the load consists of an imaginary part X7 in
series with a real part Rpyy, [17]. The output frequency of
the ultrasonic power source is adjusted automatically in such
a way that the phase difference between output current and
voltage is zero. The introduction of a self-inductance

Ly= I/m,2 Co., which is connected in parallel to the electri-
cal terminals, results in a relatively high impedance of the
electrical branch near resonance. Then, the zero phase con-
dition demands that:

u o
Xyt Xy = 0 (40)

so that the totdl impedance measured at the electrical ter-
minals is real and minimum.

In conclusion, if a generator is applied, which is equipped
with an automatic frequency control system, it is possible
to measure both the real and the imaginary part of a varying
load at the electrical terminals. The real part is determined
from the quotient of voltage and current intensity, whereas
the imaginary part is proportional to the difference between
the working frequencies under loaded and unloaded
conditions.
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Power, optimum load and efficiency

The reactive electric power in the piezoelectric material per
unit volume is given by

2
WE3

pe=__
d
1.633 -

if £3 is the peak value of the electric field strength [18].
A similar expression is valid for the mechanical reactive
power
c’2
wsf 93

= e——

Pm "

The sum of the acoustic power delivered to the load and the
mechanical power loss in the transducer, i.e., the power to
be converted, is defined by means of the effective piezo-
electric coupling factor:

E
§
P, = k\/pep,,, =% wkEJd3\/E-;;3
(41)

_ g
-’éwE;dfl”Va

after substitution of the Equations 16 and 24. Hence, the
maximum power per unit volume that can be converted by
a piezoelectric material at a given frequency is determined
by the constant d33, and by the admissible field strength
and dynamic stress amplitudes.

If, as an approximation, the factor (g/g33)"& is neglected, it
follows that:

=% wd

Pr max 3353 max” "3 max (42)

The limits on £ 3 and d 3 are generally imposed by heat
generation resulting from dielectric and mechanical losses.
IfE3 nax = 2.8 kV/em (2kV . fem), 63 max = 20N/mm?
and d33 =333lﬁd33 from Table 2 is taken, a value of about
4 W/cm? kHz for P arrived at, in agreement with
literature [19].

The actual stress in the ceramic rings at resonance depends

chiefly on the end face velocity of the transducer — see
Equations 6 and 27 — so that:

| XYy RY __

I

| s

| U ¥me

q i

{ U U Ame

| |
Generator ’ ' 1:N !

Compensating  Electromechanical Load

self-inductance transducer

Fig.9 Complete equivalent circuit of a loaded vibrator



-jd
v = e
N prc.f Sin(wsl'/c') (43)
From the equivalent circuit of Fig. 9 it follows that:
R% + R ) v
u ( m mL
Ey=—= (44)
I M

Then, after substitution of Equations 35 and 43 in Equation
44 it follows that: '

W\ E
§ 3max
R+ Ry r Yoot = 2w A (P’ Pdyy sin? (— ) — (45)
p (/5
€ 3max

The real part of the electric impedance is, in the case of the
load given in Equation 45,

6?“-+R ) E
m  "mlL Jopt 3max
(RE)opt = - (46)

N? 2Ad 330 93max
Hence, the optimum electrical impedance is lower according
as the area of the piezoelectric rings is greater. If the
assumed values of E3max and 63max are substituted in
Equation 45 together with the data of Tables 1 and 2, a
general relation is found between the optimum mechanical
load resistance and the wave impedance for our type of
transducer, viz:

(Rﬁ; Ryt ) opt = (0.08 10 0.12) A pre

A few power measurements made on the sandwich trans-
ducer indicate that indeed the power efficiency [17] is opti-
mum for the load given in Equation 47.

47

On a Jamuy of high-power transaucers

Conclusions

1) The sandwich type of ultrasonic power transducer des-
cribed in this paper is well suited for the efficient con-
version of electric power into acoustic power at an inten-
sity of at least 40 W/cm?2. The design frequency can be
chosen between 15 and 150 kHz.

2) The transducer has a very simple design and is easily
coupled to any metallic waveguide system.

3) The electrical impedance under clamped and free mech-
anical conditions, the electro-mechanical characteristics
and the resonance conditions are adequately described
by the applied one-dimensional mathematical model.

4) It is possible to determine both the real and the imagi-
nary part of a varying mechanical load in a simple way
by measuring electric voltage, current intensity and
frequency dynamically at the output terminals of the
ultrasonic generator.

5) The principal demands that must be made on a piezo-
electric material for high-power applications are:

a) the mechanical and dielectric loss factors must be
low in order to improve efficiency, or,.to increase
the power handling capacity by enabling the
application of high dynamic stress and high electric
field strength;

b) the piezoelectric constant d33 must be high in
order to improve the power handling capacity and
to decrease the electric impedance at a given
acoustic load.

6) The volume of a given piezoelectric material determines
the total power that can be converted. A minimum.
value of the optimum electrical impedance under load is
obtained if the area of the piezoelectric rings is maxi-

An overall efficiency of 88% at a power intensity of mum.
41 W/cm? has been measured at that load.
Symbols N electromechanical transformer ratio, As/m
Equation 35
A area of the piezoelectric rings _ m? auation
Rm.R i i i
Co paEtes 60 the Bransdiveer af low F m-fe mechanical or electrical resistance kg/s.S2
frequency S3 strain in polarization direction -
¢ velocity of sound in end piece metal m/s 5335 elastic compliance m?/N
D3 charge density in polarization direction C/m? T el?ctromechanical transformation As/m
actor, Equation 25
d33 piezoelectric constant = g33/893 m/V &
. . . u electric voltage v
E3 electric field strength in polarization V/m
direction v particle velocity m/s
i frequency Hz Xm mechanical reactance kg/s
flw)  frequency function, Equation 6 N/m? ZmZe mechanical or electrical impedance kg/s§2
£33.8 piezoelectric constant Vm/N B33 inverse dielectric constant m/F
8m,8e mechanical or electrical loss angle -
. e specific mass of end piece metal kg/m?
! current intensity A
) ) mechanical stress in polarization N/m?
k effective piezoelectric coupling factor - -
_ w angular frequency = 2rf 5!
! thickness of a piezoelectric ring m i -1
Wp, s parallel or series angular resonance s
r length of a metal end pieze m frequency
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